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INTRODUCTION 

I n  chloroplas ts  e lect rons  ar&-driven from water t o  NADPH or  other 

e lec t ron  acceptors through a po t en t i a l  difference of > 1 . 2  V by means of 

two s e r i e s  connected photoacts. The photoproducts a re  processed i n  dark 

react ions  which operate at both ends of t h e  two photosystems and i n  t h e  

connecting chain. This e s sen t i a l l y  l i n e a r  e lec t ron  t ranspor t  chain i s  

linked t o  an AT? generating process which consumes par t  of t h e  chemical 

po t en t i a l  generated by l i g h t .  The e lec t ron  t ranspor t  c h a i ~ l  contains a 

dozen or more components, each i n  very smali  concentration compared t o  the  

t o t a l  chlorophyll ( Chl) . Observation of these  components and t h a t  of t he  

end products i s  done by a var ie ty  of d i r e c t  o r  ind i rec t  met.hods, discussed 

i n  other pa r t s  of t h i s  volume. We w i l l  be concerned here with t h e  natulne 

and number of t h e  e lec t ron  t ranspor t  components; pa r t i cu l a r l y  t h e  i n t e r -  

p re ta t ion  of k i n e t i c  data  concerning these  intermediates. Any models 

presented a re  f o r  i l l u s t r a t i v e  purposes and a r e  not an attempt t o  present 

a t r u e  and complete s tory .  

Because of t h e  ease with which chlorophyll can be determined, 

concentrations of t h e  e lec t ron  t ranspor t  components a re  usua l ly  expressed 

i n  terms of t o t a l  chlorophyll.  One should r e a l i z e  t h a t  chlorophyll content 

var ies  with p lan t  mater ia l  and i t s  pretreatment. 

I n  strong, r a t e  sa tu ra t ing  l i g h t ,  green plants,  algae and we l l  

prepared spinach chloroplas ts  evolve up t o  300-400 moles of 0 per mole 
2 

chlorophyll per hour. 'j2 This corresponds t o  .1 o2/G'hl. sec o r  approximately 

.5 e lec t ron  equivalent/ Chl- sec . Roughly then, as  swning t h a t  2 exc i ta t ions  



a r e  needed t o  move an e lec t ron  through t h e  chain (8 h 4 0  ) we compute t h a t  
2 

a t  optimal r a t e  each chlorophyll undergoes one usefu l  exc i ta t ion  per 

second; i . e . ,  a t  optimal r a t e  t h e  turnover time of t h e  chlorophyll i s  1 see. 

Instead of giving continuous strong l i g h t ,  Emerson and Arnold 3 ~ 4  

illuminated algae with r epe t i t i ve  shor t  br ight  f l ashes .  They found t h a t  

t h e  individual  f l ashes  l o s t  ef fect iveness  i n  removing e lect rons  from water 

i f  they  were spaced c loser  than rw 10 msec and t h a t  f lashes ,  Sr ight  enough 

t o  s a tu r a t e  t h e  photochemical events, could not process more than  1 e l ec t ron  

per 500 Chl. Optimal r e s u l t s  i n  s imi la r  experiments5 range t o  values of 

U - 5 msec and 1 ed4.00 Chl, which i s  i n  rough agreement with t he  t~wnove r  

t i m e / ~ h l  given i n  t he  preceding paragraph. The i n t e rp re t a t i on  i s  t h a t  

the re  i s  one e lec t ron  t ranspor t  system f o r  each 400 Chl i n  the  chloroples t .  

This i s  substant ia ted by t h e  observation t h a t  c e r t a i n  important const i tuents  

- 
6 such a s  cytochrome f and ferredoxin7 occur i n  an abundance of about 1/400 

Chl. I f  we now a s s m e  t h a t  t h e  t o t a l  chlorophyll i s  equally divided be-tween 

t h e  two photosystens, t he  p ic tu re  emerges (Fig.  1) of separate e lec t ron  

t ranspor t  chains which each comprise 2 photosystems ( I  and 11). Each photo- 

system contains some 2OC l i g h t  harvesting pignent molecules from which 

exc i ta t ions  flow t o  a t rapping center  where t h e  phot oconversion occurs. 

Arr ival  of a quantam i n  each reac t ion  center  r e s u l t s  i n  a charge separation.  

, I n  system I an e lec t ron  moves from t h e  primary photooxidant P700 ( a  spec i a l  

chlorophyli complex of medium poten t ia l )  t o  t he  primary photoreductant "XI' 

which.has a very low midpoint po t en t i a l  but  i s  not f u r t h e r  i den t i f i ed .  I n  
I 

system I1 t h e  e lec t ron  i s  t r ans fe r red  from an unident i f ied  high po t en t i a l  
i 

oxidant "Z" t o  a medium po t en t i a l  reductant  "Q", poss ibly  a quinone. I n  



-I- 
subsequent dark s teps  Z i s  reduced, u l t i m a t e l j  by water, while 0 i s  s e t  

2 
i- 

f r e e  and X- i s  reoxidized - ul t imately  i n  whole c e l l s  by C02. R O O  i s  

reduced by Q- via  t h e  interconnecting r e a c t i o r  chain - probably including 

t h e  s i t e  which generates ATP. The ATP i s  u t i l i z e d  i n  t h e  f i x a t i o n  of C02. 

I n  i so la ted  chloroplas ts  one can arrange condLtions so t h a t  only par t  of 

t h e  chain i s  operative and su i tab le  a r t i f i c i a l  e lec t ron  donors or  acceptors 

can replace t h e  na tura l  ones. 

O f  t h e  4 primary photoproducts only VOO can be monitored d i rec t -  

l y .  This can be done by spectroscopically vie-,.~ing t h e  l o s s  o r  gain  of 

absorption at  700 nm upon oxidation or  reduction.  The redox s t a t e  of & can 

presumably be viewed by t h e  fluorescence yielc? of system 11, an i nd i r ec t  

but t echn ica l ly  r a the r  simple method. no d i r ec t  observations have been 

made of Z, X or  most of t h e  other components or' t h e  chain except f o r  cyto- 

chromes and quinones which undergo adequate absorption changes upon 

oxidation or  reduction. Thus, much of t h e  k ine t i c  information i s  obtained 

by ind i rec t  approaches i n  which one monitors products such a s  02, reduced 

acceptors, ATP, or  pH. 

We w i l l  discuss methods f o r  de t e rmin iq  t he  nature and number of 

components i n  t he  e lec t ron  t ranspor t  chain and t he  r a t e s  at which t he  

equivalents a re  t rans fe r red  from one component t o  another. F i r s t  we w i l l  

discuss t he  primary photochemical donors and acceptors, then t h e  pools of 

components i n  t he  chain and f i n a l l y  some aspects of k ine t i c s  applied t o  

photosynthetic systems. 



Observation of P7OO and I t s  Immediate Electron Donors. 

Light absorbed by system I causes t h e  photooxidation of R O O  which 

i s  characterized by a l o s s  of op t i ca l  density8 and t h e  formation of an EPR 

signal.' The photoconversion can take place i n  a s ing le  very b r i e f  f l a s h  

and at temperatures a s  low a s  t h a t  of l i qu id  helium.1° This indicates  a 

primary event; i .e . ,  not a t r a n s f e r  of e lect rons  i n  a thermal dark react ion.  

Under appropriate conditions one can s lov ly  reduce R O O  i n  dark and sub- 

sequently view t h e  time course of i t s  photooxidation i n  weak l i g h t .  The 

k ine t i c s  of t h i s  conversion a l s o  ind ica te  t h a t  t h e  oxidation of P700 i s  a 

primary event: If t h e  acceptor X i s  mai-ntained i n  t h e  ac t ive  oxidized s t a t e ,  

t h e  r a t e  of R O O  photooxidation a t  any moment i s  proportional  t o  t h e  amount 

of reac t ive  v00 (v00 s t i l l  reduced) r e su l t i ng  i n  a first order time course 

of t h i s  photooxid-ation. The r a t e  of t h i s  oxidation i s  groportional  t o  t h e  

nmber.of incident  photons per u n i t  time so t h a t  t h e  half-time of t h e  photo- 

oxidat ion i s  inversely  proportional  t o  in tens i ty .  The observations a r e  

consis tent  with: 

where b1 i s  t h e  quantum y ie ld  when a l l  P i s  reduced, q t he  f r ac t i on  of 

photons absorbed by system I, I t h e  number of incident  photons, P t he  

. amount of reduced P/OO and Ptot i s  t h e  t o t a l  amount of ROO. Assuming t h a t  

t h e  ex t inc t ion  coef f ic ien t  of W O O  i s  t h e  same as  t h a t  of t he  l i g h t  harvest- 

ing chlorophyll,  one computes from t h e  maximum change i n  op t i ca l  densi ty  upon 

photooxidation an abundance of t h e  order of one 460/b00 Chl. 

I n  green ce l l s ,  cytochrome - f and plastocyanin a c t  a s  e lect ron donors 

4- 
t o  P O 0  and occur i n  a s i m i l a r  concentration, probably i n  a 1:l r a t i o .  6,11 



It i s  somewhat d i f f i c u l t  t o  i s o l a t e  t he  photochemical conversion of T O O  

+ 
since these  donors reac t  rap id ly  with P700 , even a t  low temperatures. 

12 
- - 

For instance, at  -196'~ ( i n  l i qu id  N ~ )  l i g h t  photooxidizes both V O O  and 

cytochrome (denoted "C")  and even here t h e  t r a n s f e r  can occur i n  a few 

~ n i l l i s e c o n d s . ~ ~  The a b i l i t y  of cytochrome t o  r eac t  rap id ly  with R O O  at 

low temperature ind ica tes  t h a t  c o l l i s i o n  chemistry i s  not involved i n  t h e  

t r ans f e r  and t h a t  t h e  two components a r e  arranged as pa i r s  i n  c lose  

'proximity t o  each other.  

The Photoreductant of System I. 

The chemical nature of t h e  primary e l ec t ron  acceptor i n  system I 

i s  unknown ( "x" ) . One a p r i o r i  expects tha t -  i t s  abundance i s  equal t o  

t h a t  of P700 and t h a t  t h e  two form a complex. X- i s  a strong reductant 

which can reduce many e lec t ron  acceptors including low po ten t ia l  dyes l i k e  

methylviologen. The semi-quinone of viologen has a strong absorption band 

so t h a t  one can spectroscopically  vie+^ i t s  formation a f t e r  a shor t  l i g h t  

f l a s h  - and i t s  subsequent disappearance due t o  reoxidation by 0 2 ' As ex- 

4- 
pected, t h e  reac t ion  X- + V + H VH t- X proceeds f a s t e r  t h e  more 

viol-ogen (denoted V) i s  present.  A t  a concentrat ion of lo-' M t h e  reac t ion  

i s  ha l f  completed i n  l e s s  than  a millisecond. Indophenol dye r e a c t s  wi th  

even greater  rap id i ty .  l4 The r a t e  of t h e  na tura l  reoxidation of X v i a  

f erredoxin and NADP reductase t o  NADP i s  not known; however, measurements 

wi th  chloroplast  fragments and exogenous donor ind ica te  it i s  g rea te r  than  

1 0 0 / s e c . ~ ~  For chloroplas ts  i n  t he  absence of an exogenous e lec t ron  accept- 

o r  t he r e  rerriair~s a r a the r  var iable  res idua l  r a t e  of e lec t ron  t ranspor t  i n  

a i r  ( ~ e h l e r  reaction),16 ind ica t ing  t h a t  X- r e a c t s  with 0 2 i n  about one see. 



The Phot oreduct ant  of System 11, 

The chemical nature of the  primary e lec t ron  acceptor "Q" i n  system 

I1 is  a l so  not known. It i s  speculated t h a t  it may be a plastoquinone. 

Therefore i nd i r ec t  means must a l so  be used t o  determine t h e  redox s t a t e  of 

t h i s  component. These methods a r e  based on t he  assumption t h a t  photo- 

chemistry can only proceed when t h e  acceptor i s  i n  t h e  oxidized, ac t ive  

s t a t e .  

Fluorescence, being r e l a t i v e l y  easy t o  measure, i s  of ten used as a 

t o o l  f o r  monitoring t h e  s t a t e  of Q. The reasoning irsed i s  a s  follows: A 

quantum absorbed by one of t h e  chlorophylls i n  a u n i t  wanders through t h e  

pigment a r ray  u n t i l  it encounters an ac t ive  reac t ion  center  where it 

c a r r i e s  out a photoconversion. These events must t ake  place i n  l e s s  than 

-8 N10 sec o r  e l s e  t h e  exc i t a t i on  i s  degraded i n t o  heat o r  reemitted a s  

(N 700 lm) fluorescence. Blocking of t he  photochemistry i s  therefore  

accompanied by an increase  i n  fluorescence; and fluorescence changes occur 

i n  a manner complimen%ary t o  t h e  photochemical r a t e s .  

Photochemistry i n  t he  two systems i s  blocked i f  any of the  two 

donors or two acceptors a r e  i n  t h e  inac t ive  s t a t e .  However, no s ign i f ican t  

fluorescence changes have been observed which a r e  conclusively a t t r i bu t ed  t o  

t h e  s t a t e  of t he  system I t raps ,  a f a c t  f o r  $~hich  w e  have no ready explanation. 

Furthermore, fluorescence changes a r e  usual ly  a t t r i bu t ed  exclusively t o  the  

s t a t e  of t h e  system I1 acceptor Q, s ince  it i s  assumed t h a t  under most 

conditions the  high po t en t i a l  photooxidant Z remains i n  i t s  reduced, photo- 

ac t ive  st,8.%e, 

The sum of t h e  quantum y ie lds  f o r  fluorescence f ,  degradation i n t o  



heat H, and photochemistry r must be equal t o  un i ty  ( f  t- H -t r = 1). The 

fluorescence y ie ld  then increases a s  t h e  system I1 t r a p s  close; i. e. ,  

f + 1 - H when r + 0 Most fluorescence analyses assume t h a t  f i s  pro- I 

por t iona l  t o  A. I f  t h i s  postula te  i s  made, r = 1 - F; where F = f/f,, 

and fmax ( see  Fig. 2 )  i s  t h e  fluorescence f o r  a l l  t r a p s  closed, r = 0. 

Q i t h  t h i s  postulate,  changes i n  photochemical y i e ld s  a r e  equal t o  normalized 

negative changes i n  fluorescence y ie lds .  We can compare with t h e  photo- 

chemical r a t e  r a the r  than  t h e  yie ld ,  s ince t h e  quantum y i e ld  f o r  photo- 

chemistry i s  t he  rate/absorbed in tens i ty ;  t h e  l a t t e r  expressed i n  

quanta/unit time. For a given i n t e n s i t y  t he  r a t e  R i s  proportional  t o  t he  

quanturn yie ld;  i . e . ,  R = constant x r. I n  addi t ion t o  t h e  var iable  f l uo r -  

escence f described above, t he r e  i s  a constant fluorescence y ie ld  f which 
0' 

i s  unaffected by t h e  photochemistry. A problem encountered i s  t h e  question 

whether f o  i s  t h e  fluorescence due t o  some small amount of disconnected 

pigment (dead fluorescence) o r  i s  due t o  fluorescence i n  competition wi th  

photochemistry. For ei . ther case R / R ~ =  = 1 - F, where Rmax i s  the  maximum 

r a t e  and f and f a r e  measured from f . For t h e  l a t t e r  case (no dead 
max 0 

fluorescence) f must be included i n  f f o r  computation of t h e  quantum y i e ld  
0 

The var ia t ions  i n  fluorescence do tend t o  behave a n t i - p a r a l l e l  t o  

t h e  r a t e  of e lec t ron  t r a n s p o ~ t  of system 11; i . e . ,  va r ia t ions  of the  r a t e  

of photochemistry as measured by t h e  r a t e  of oxygen evolution follow t h e  

properly normalized var iable  fluorescence yield.17 With an a r t i f i c i a l  
I 

e l e c t ron  donor such a s  hydroxylamine replacing wate%, t h e  fluorescence 
1 

t r a n s i e n t  i s  not changed,18. which supports t h e  notion t h a t  one exclusively 

views t h e  phenomena on t he  reducing s ide  of system 11. 



It i s  important t o  note t h a t  although the  assumption t h a t  H i s  

proportional  t o  f does appear t o  be va l id  i n  many cases, and i s  used 

extensively i n  in te rpre t ing  fluorescence data, t he  l i t e r a t u r e  abounds with 

evidence t h a t  t h e  s i t u a t i o n  i s  not so  simple. One exception i s  seen i n  

whole c e l l s  when considering long term e f f e c t s  (W 1 min o r  longer) .  19 -2 1 

Another exception t o  t h e  simple behavior i s  observed at the  onset of 

i l luminat ion a f t e r  a dark period where F shows a pecul iar  rap id  r i s e .  22 

S t i l l  another problem encountered i s  t he  i n a b i l i t y  t o  induce t h e  f u l l  

fluorescence r i s e  i n  l e s s  than about 50 msecs, no matter how intense  t h e  

l i g h t  .23 It should be a l s o  mentioned t h a t  we have only considered non- 

cyc l i c  flow through system 11. The 0 evoLution system i s  r a t h e r  f r a g i l e  
2 

+ 
and Z i s  a l a b i l e  photoproduct which can oxidize substances other  than  

water, probably including Q- so t h a t  a cyc l ic  flow i n  system I1 may occur. 

I n  s p i t e  of these  reservat ions  fluorescence has been a very usefu l  t o o l  

f o r  t h e  study of Q. Our app l ica t ion  i n  t h e  following w i l l  be f o r  

s i t ua t i ons  i n  which t h e  deviations probably pley l i t t l e  o r  no ro le .  

Assuming t h a t  Z i s  always reduced, t he  r a t e  of system I1 photo- 

chemistry i s  proportional  t o  t he  amount of Q i n  t h e  act ive ,  oxidized s t a t e .  

This gives Q,/%= = R / R ~ ~ ~  = 1 - F. Actually t he  r e l a t i o n  between Q and 

R (and therefore  F) i s  not qu i te  l inear .24  This nun-lineari ty i s  ascribed 

t o  a c e r t a i n  degree of cooperation between system I1 pigment u n i t s  - an 

absorbed quantum which f i nds  t h e  nearest  center  closed having a chance t o  

t r a v e l  t o  a neighboring u n i t .  The reader i s  re fe r red  t o  t he  l i t e r a t u r e  f o r  

t h i s  complicating phenomenon. 24'25 For s impl ic i ty  we w i l l  adhere t o  t h e  

l i n e a r  r e l a t i o n  between Q, F and R. 



The poison D C N  presumably prevents t h e  normal rapid  reoxidation 

of Q- by i t s  reac t ion  par tner  A, discussed . - below. A slow dark oxidation 

remains however, so  t h a t  i n  darkness Q- i s  returned t o  Q i n  about a second. 

I f  one now a d m i t s  a l i g h t  beam, t h e  incoming quanta progressively convert 

Q t o  Q- and t h e  fluorescence y ie ld  r i s e s  ( ~ i g .  2 ) .  Since i n  t h e  presence 

of DCMU Q- i s  reoxidized slowly, reoxidation during t h i s  conversion can 

\ 
be neglected i n  a l l  but t h e  weakest i n t e n s i t i e s .  Assuming t h a t  Z remains 

reduced, we expect t h a t  t h e  photochemical r a t e  i s  proportional  t b  oxidized 

Q and t he  conversion should, a s  i n  t h e  case f o r  P, proceed i n  a f i r s t  

order manner : 

Due t o  t h e  exc i t a t i on  energy t r a n s f e r  between un i t s  mentioned above, t h i s  

$4 
expectadtion proved only approximately f u l f i l l e d .  

In t h e  presence of DCW t h e  conversion Q + Q- as defined by 

fluorescence behaves a s  a purely photochemical a c t :  a )  t he  r a t e  i s  in -  

versely  proportional  t o  l i g h t  i n t ens i t y ,  b )  most of t h e  conversion can be 

ca r r ied  out by a s ing le  10I(lsec l i g h t  f l ash ,  provided it i s  b r igh t  enough 

t o  de l iver  s u f f i c i e n t  quanta, c )  t h e  phenomenon s t i l l  occurs i f  t h e  

sample i s  dark res tored a t  room temperature and then p r io r  t o  i l luminat ion 

i s  cooled with dry ice.26 Since t h e  DCMU r i s e  curve r e f l e c t s  t h e  r a t e  of 

photoconversion of t h e  system I1 t r a p s  i n  a sample, i t s  half-time can be 

used as a rough measure.of t he  e f f ec t i ve  system I1 i n t ens i t y  of a l i g h t  beam. 



Pools : General Considerations. 

I n  speaking of pools we a r e  concerned with t he  number of e lect rons  

t h a t  can be stored i n  e i t h e r  par t  of o r  t h e  whole of t h e  chain between Q and 

P. Since we have not been ab le  t o  measure a l l  of these  storage compcnents 

d i rec t ly ,  i nd i r ec t  methods have been used. 

I n  order t o  discuss these  methods, we w i l l  f i r s t  consider t h e  

problems involved i n  measuring t h e  capacity of ordinary swimming pools. 

Suppose t h a t  we have, a s  i n  Fig. 3, two pools, A and B. We can measure 

t h e i r  t o t a l  capacity by emptying t h e  pools and then measuring t he  t o t a l  

amount of water needed t o  T i l l  t h e  pools; a l t e rna t i ve ly  i?e can f i l l  t he  

pools and measure t h e  amount of water we can pulp from them. It may be 

ea s i e r  t o  measure t h e  r a t e  of water flo7,~ing through our pumps, i n  which 

case we can in tegra te  t h i s  r a t e  over t h e  time necessary t o  f i l l  o r  empty 

t h e  pools: Pa01 s i z e  =Jl?ate d t .  Since our pools a re  leaky we must pump 

f a s t  enough so t h a t  we can neglect t h e  water t h a t  leaks out. We could check 

t h i s  by doubling our pumping speed and seeing i f  we get  t h e  same r e s u l t .  

If we wanted t o  measure t h e  capacity of A alone, we must t r y  t o  

f i l l  f a s t  enough so t h a t  flow from A t o  B i s  negligible,  and s imi la r ly  t o  

get t h e  s i ze  of B we must empty B f a s t  enough so  t h a t  l i t t l e  wa-ter f l o $ ~ s  

from A.  Again we can check by varying t h e  pumping speed. 

We can now discuss photosynthetic systems by replacing our pools 

with e l ec t ron  t ranspor t  components, t h e  water by e lec t ron  equivalents, t h e  

pumps by t he  photoacts and t h e  connection between t h e  pools by some (at  times) 
1 

r a t e  l imi t ing  s tep.  We can measure t h e  number of equivalents put i n t o  a,n 
I 



emptied pool by t h e  amount of e i t h e r  added o r  na tura l  system I1 donor 

oxidized during t h e  f i l l i n g .  We can measure t h e  number of equivalents 

removed from the  pool from t h e  behavior of system I acceptors. We can 

a l s o  make pool s i z e  determinations from t h e  r a t e  of flow at e i t h e r  end. 

Different  pools can be studied by a l t e r i n g  t he  l i g h t  i n t ens i t y  

( r a t e  of and t h e  r a t e  l imi t ing  s teps .  I f  we f i nd  t h a t  over a 

wide range of l i g h t  i n t e n s i t i e s  t h e  pool s i z e  determinations a r e  

independent of l i g h t  in tens i ty ,  then we f e e l  we a r e  viewing a t r u e  pool 

of intermediates . 
We can empty t h e  pool wi th  fa r - red  l i g h t  which i s  almost ex- 

c lus ive ly  e f f ec t i ve  f o r  system I. (care  must be used t o  make t h i s  l i g h t  

not t o o  strong, p a r t i c u l a r l y  without a system I acceptor, o r  t he  s m a l l  

system I1 component can become apprecizble . )  No l i g h t  i s  exclusively 

e f f ec t i ve  f o r  system 11 and we have t o  r e s o r t  t o  r a t e  l imi ta t ions  f o r  

f i l l i n g  . 
Pool Size Determinations - Rate Limitat ions.  - 

Since r a t e  l i ra i ta t ions  a r e  used t o  separate pools we w i l l  discuss 

these  l imi ta t ions  before going on t o  spec i f i c  examples of pool s i z e  

determinations. The r a t e  l imi ta t ions  depend very much on t h e  systey be- 

ing studied.  It i s  not .always c l ea r  where t h e  l im i t a t i on  occurs and 

indeed t h i s  i s  one of t h e  problems with  pool s i z e  determinations; i . e . ,  t o  

know what pools a r e  being measured. 

The r a t e  l im i t a t i on  i n  i so l a t ed  chloroplas ts  without acceptor i s  

1 
i n  t h e  t r ans f e r  of e lect rons  from X -t O2 ( ~ e h l e r '  react ion) ;  i. e., at  3 



i n  Fig. 1. This r a t e  i s  on t he  order of 1 electron/sec . Therefore, 

br ight  l i g h t  can be used t o  f i l l  (reduce) t h e  e n t i r e  chain i n  wel l  washed 

chloroplas ts .  

This r a t e  l im i t a t i on  i s  removed by t h e  addi t ion of an e lec t ron  

acceptor such a s  methyl viologen. Now the  r a t e  l im i t a t i on  depends on t h e  

s t a t e  of t h e  ATP generating system. If t h e  ATP apparatus i s  funct ional  

but  "constipated" ( a  s t a t e  which can be obtained by not supplying phospho- 

ry l a t i on  subs t ra tes  such a s  ADP, Pi, e t c . )  then  t he r e  i s  a l imi ta t ion  at  

t h e  ATP s i t e  ( 2  i n  Fig. 1) of about l0/sec.  1~27  Theref ore, f o r  wel l  pre- 

pared chloroplas ts  wi th  an acceptor but  no ADP, e tc . ,  b r igh t  l i g h t  probably 

f i l l s  a l l  pools up t o  an  ATP s i t e  and empties a l l  pools on t he  other  s i de .  

The l im i t a t i on  at  t h e  ATP s i t e  i s  re l ieved i f  t h e  ATP process i s  

shor t  c i rcu i ted  by an uncoupler. As w i l l  be discussed l a t e r ,  A possibly 

does not ge t  f u l l y  reduced i n  uncoupled chloroplas ts  (wi th  acceptor); 5,.  e., 

A becomes reduced u n t i l  the  t r a n s f e r  time of Q + A equals t he  t rans -  

f e r  time of A- + B-.  h he Q- + A r a t e  i s  proportional  t o  A oxidized 

while t h e  A- 4 B- r a t e  i s  proportional  t o  A reduced. ) The r a t e  

l im i t a t i on  i s  there fore  possibly a t  A ( 1  i n  Fig. 1). The steady-state r a t e  

I 
f o r  such uncoupled chloroplas ts  i s  about 100 equiv./sec. This i s  i n  

agreement wi th  t he  time f o r  reduction of R O O  af'c;er t h e  cessat ion of b r i gh t  

l i g h t  of tw 10 msec and with  t h e  turnover time f o r  a component of A, p l a s t i -  

quinone, which w i l l  be discussed l a t e r .  

The s i t u a t i o n  i n  whole c e l l s  i s  not e n t i r e l y  c lea r .  - The r a t e  i n  

I 
whole c e l l s  i s  comparable t o  t h a t  i n  uncoupled chloroplas ts  (with acceptor), 

ind ica t ing  t h a t  t h e  c e l l s  behave almost l i k e  such chloroplas ts .  This i s  t o  



be expected since both e lect rons  from system I and t he  ATP are  being 

e f f i c i e n t l y  u t i l i z e d .  ( ~ f f i c i e n t  u t i l i z a t i o n  or' ATP should give t h e  same 

r e s u l t  a s  short  c i r cu i t i ng  t h e  ATP system. ) Ho~~ever, l imi ta t ions  might 

a r i s e  at t h e  ATP s i t e ,  i n  a way t h a t  balances t h e  ATP production and C02 

reducing processes. 

Pools a s  Viewed f r o m t h e  System I Side. 

A s  was indicated above, with strong white l i g h t  we can f i l l  t h e  

pools from Q t o  t h e  ATP s i t e  i n  i so la ted  chloroplas ts  i n  t h e  presence of 

a system I acceptor (such as  methyl viologen). Ve can .then use weak t o  

moderate far- red l i g h t  ( e f f ec t i ve  mainly f o r  system I) t o  empty it, while 

measuring t he  r a t e  of acceptor reduction.  he modulated polarograph 28 

arranged t o  observe methyl viologen reduction r a t e  i s  be s t  used f o r  t n i s . )  

The i n t e g r a l  JRdt i s  then  a measure of t h e  A pool. I n  t h e  presence of an 

acceptor, t he  r a t e  R of photooxidation on system I should be proportional  1 

t o  t h e  amount of WOO i n  t h e  reduced s t a t e .  Figures 4 and 5 show t h a t  t he  

r a t e  of methyl viologen reduction does indeed p r a l l e l  t h e  behavior of 

reduced I n i t i - a l l y  VOO i s  f u l l y  reduced and t h e  (modulated) system 

I r a t e  i s  maximal. A t  t h e  end of t h e  t rans ien t  v00 becomes l a rge ly  oxi- 

dized and t h e  r a t e  very low because t h e  reduced pool i s  depleted. 

Since X i s  kept oxidized by an acceptor, R1 = 9 lbl p/ptOt and 

PIdt i s  proportional  t o  t h e  t o t a l  number of equivalents.  This i n t e g r a l  

i s  I times t h e  a rea  under t he  curve of P - vs.  t given i n  f ig.  5 .  For a 

f ixed  far-red measuring beam the  a rea  i s  the re fore  proportional  t o  the 

number of equivalents.  I f  a l l  the  e lect rons  a r e  measured one should get  t h e  



same a rea  f o r  d i f f e r en t  l i g h t  i n t e n s i t i e s  i f  one p lo t s  P against  I x t 

( i . e . ,  photons) ins tead of t .  As indicated previously, such a check of 

using d i f fe ren t  l i g h t  i n t e n s i t i e s  i s  necessary t o  insure  t h a t  a l l  of t h e  

e lec t rons  a re  counted and t h a t  the  measurements a r e  not l imi ted by some 

dark reac t ion  o r  leaking,  The pools measured a s  i n  Figs 4 and 5 a r e  i n -  

dependent of l i g h t  i n t e n s i t y  over a la rge  range of i n t e n s i t i e s .  I f  t h e  

measurements a r e  made i n  an i n t ens i t y  range such t h a t  dark react ions  have 

no influence ( a r e  f a s t  compared t o  t h e  quantum f lux ) ,  t h e  k ine t i c s  of t h e  

P700 changes ( t h e  shape of t he  t r a n s i e n t )  should a l s o  be independent of 

i n t e n s i t y  when p lo t ted  against  I x t. It i s  conceivable t h a t  dark reac t ion  

times a l t e r  the  k ine t i c s  but not t h e  a rea  o r  t o t a l  equivalents counted. No 

such k ine t i c  changes have been reported, perhaps due t o  t he  f a c t  t h a t  

emptying times have been r a the r  s lo i .~  (seconds). 

The a reas  shown above give a r e l a t i v e  measure of pool s ize .  It i s  

sometimes d i f f i c u l t  t o  determine absolute magnitudes of t h e  pool. To be 

meaningful these  magnitudes must be  compared t o  some standard such a s  t o t a l  

chlorophyll  or  number of a pa r t i cu l a r  molecule such a s  P(O0. The s r ea s  

above a r e  re fe r red  t o  t h e  number of WOO molecules i n  t h e  following manner: 

~ e a s u r e m e n t s ~ ~  (which wil.1 not be discussed here) ind ica te  t h a t  a f t e r  about 

20 min. i n  t he  dark only Pro0 and another par tner  molecule a r e  reduced. The 

' 

a rea  obtained when V O O  i s  oxidized by far- red l i g h t  i s  then  two e q ~ ~ i v a l e n t s .  

A l l  o ther  areas can then be r e l a t ed  t o  t h i s  "standard". Such measurelnents 

ind ica te  a pool of n~ 10 equivalents/~ 'OO. 

Care miust be exercised w i t h  t he  use of a r ; t i f i c i a l  e lec t ron  acceptors 

s ince  these  may e n t e r t a i n  a cyc l ic  e lec t ron  flow. For example, a reduced 



system I acceptor may donate i t s  e lec t ron  d i r e c t l y  or  i nd i r ec t l y  back t o  

f 
P700 i n  competition with t h e  flow from the  pools. Viologens (-+ 0 ), f e r r i -  

-/ 2 

cyanide and ferredoxin (+ NADP) a r e  commonly used acceptors which probably 

do not cycle. 

Pools as Viewed from t h e  System I1 Side. 

Pools can a l s o  be measured from t h e  system I1 s ide  of t h e  chain by 

giving l i g h t  strong enough t o  f i l l  (reduce) t h e  chain up t o  some r a t e  limit- 

ing s t e p  and counting t he  number of equivalents put i n t o  t he  system t o  

reach t h e  steady-state.  The r a t e  R of oxygen evolution can be measured 

while f i l l i n g .  The number of equivalents put i n t o  t h e  system i s  then 

4 f Rdt .  h he f ac to r  4 comes from 4 equivalents per  0 molecule. ) The 
0 

2 

r a t e  of f i l l i n g  must be much f a s t e r  than  t h e  r a t e  l imi t ing  s t ep  o r  s~bsequen t  

flow negates t h e  r e s u l t s .  For example, t h e  Mehler reac t ion  may add oxidizing 

equivalents i n t o  t h e  system i f  t h e  measurement i s  t o o  slow. The influence of 

t h i s  and of other dark react ions  can be checked as f o r  R O O  by doing t h e  

experiments at d i f f e r en t  i n t e n s i t i e s  and p lo t t i ng  t h e  r e s u l t s  i n  terms of 

Alternatively,  s ince  t h e  r a t e  of system P I  i s  r e l a t ed  t o  fluorescence 
0-3 

yield ,  t h e  i n t e g r a l  ( 1  - ~ ) d t  i s  a l s o  proportiona.1 t o  t he  number of equi- 
0 

valents  put i n t o  t h e  chain. This i s  t h e  a rea  above t he  r i s e  curve f o r  flu-or- 

escence ( see  Fig. 6 ) .  The a rea  so obtained i n  t h e  absence of an acceptor i s  

about 20 times l a rge r  than t h a t  obtained i n  the  presence of t he  poison 

DCMLI.~' Assuming t h a t  only Q i s  reduced i n  the  presence of DCMU, while t he  

whole chain is  reduced i n  i t s  absence, t he r e  a re  20 equivalents i n  t h e  chain 



f o r  each Q. Again t he  I x t law i s  f u l f i l l e d  - be it now only over a 

r e s t r i c t e d  range of i n t e n s i t i e s  where t h e  dark react ions  can keep pace 
- - 

with t h e  quantum f lux .  Therefore it appears t h a t  a l a rge  pool of i n t e r -  

mediates, made up l a rge ly  of secondary reductants i s  viewed. The complex 

time course of F and changes of k ine t ics  with l i g h t  i n t ens i t y  show tha t  

t h i s  pool i s  heterogenous . 

Figure 6 i l l u s t r a t e s  how t h e  equivalents reduced during t h e  r i s e  

were quant i ta ted r e l a t i v e  t o  t he  t o t a l  chlorophyll. 31 ~ f ,  a f t e r  F~~~ was 

a t ta ined,  a small, measured amount of acceptor ( f e r r i cyar ide)  w a s  added, 

t h e  fluorescence showed a temporary dip.  The a rea  bounded by t h i s  d ip  

r e -  now r e f l ec t ed  t h e  number of added FeCn equivalents a l l  of which w, 

duced by t he  l i g h t .  Therefore t h i s  added a rea  could be used as a standard. 

The r a t i o  of t he  a rea  over t h e  r i s e  curve and t h e  cal ibra ted (standard) 

a rea  yielded t h e  s i ze  of t h e  t o t a l  interna,l reducta,nt pool. With measure- 

ments of absorbed i n t e n s i t y  t h e  quantum y i e ld  of t h e  conversions could be 

estimated. It was found t o  be high (w 1 eq/2 hp) . Estimates of t h i s  

type f o r  t h e  pool of i n t e r n a l  reductants yielded values t u  1/35 Chl, al? 

order of magnitude grea te r  than t h a t  of t h e  trapping centers .  This i s  i n  

agreement with the  pool s i z e  found ( see above) using DCMU a s  a reference.  

The pool s i z e  of plastoquinone determined by absorption cha,nges a t  254 nm 

appears t o  be about 14 equivalents ( 7  molecules) per chain. 32 

Kilietics : General Pr inciples .  

The behavior (redox s t a t e )  of a component o r  pool X i s  governed by 

the  f101ii.i of equivalents h i t o  it ( f  ) and t he  flow out (I" ) The r a t e  of 
i n  out 



-E 
cha-nge of X- i s  t h e  sum of these  . I n  k ine t i c  analyses of X one determines 

f i n  
and f and t h e i r  funct ional  dependences, so  a s  t o  understand t h e  

out - 

mechanisms of t h e  underlying processes. The flow r a t e s  depend on t h e  redox 

s t a t e  of X i t s e l f ,  of i t s  e lec t ron  donor ( D )  and. of i t s  e lec t ron  acceptor 

(A). For example, t he  flow t o  a completely reduced component i s  zero. I f  

t h e  component i s  a primary photochemical acceptor or donor, t h e  r a t e  depends 

on l i g h t  i n t e n s i t y  ( I ) .  I n  addi t ion t h e  flow depends on other  environmental 

fac to rs ,  such a s  temperature, s t a t e  of t he  membra~e, pH, e t c .  We have then  

Techniques used i n  determining these  functions involve a change of 

t h e  system and a study of t h e  subsequent time course of X end (when poss ible)  

o ther  parameters. I so l a t i on  of each of t h e  two functions ( f , ?  and f ) can 
1 ~1 out 

o f ten  be achieved by blocking one of t h e  t r ans f e r s .  For exmple,  t h e  flew 

from Q can be blocked chemically wi th  DCMU, or  flow from a component might 

be blocked by reducing i t s  acceptor ( A ) .  Fa r t i cu la r  t r a n s f e r s  may be lacking 

i n  mutants. I f  one of t he  r a t e s  ( f o r  example f .  ) i s  l i g h t  driven, t he  dark 
I n  

reac t ion  ( f  ) can be followed a f t e r  removing t h e  l i g h t .  
out  

To i l l u s t r a t e  we w i l l  t ake  a simple example i n  which l i g h t  ( I )  

reduces X and t h e  e lec t ron  i s  then  t rans fe r red  i n  a dark reac t ion  t o  some 

coniponent Y: 

XY + h P  -t X-Y XY-. 

Let us. assume t h a t  f i s  proportional  t o  X and I and t h a t  f i s  proportional  
i n  out 

t o  t h e  n~unber of donors X- and acceptors Y. We furt ,her assume t h a t  Y i s  held 

-% 
The c a p i t a l  l e t t e r s  w i l l  be used t o  denote concentrations of components and 

t h e  superscr ipt  minus t o  designate t h e  reduced s t a t e .  



constant ( f o r  example by an excess of ex te rna l  oxidant) .  Then fout i s  pro- 

por t iona l  t o  X- alone and - -- 

where ( s ince  Y i s  constant)  k = ktY and t h e  subscript  T denotes t o t a l  con- 

cen t ra t ion  of t h e  component. For X- = X; at t = 0, t h e  so lu t ion  t o  t h i s  

equation yie lds :  

where q, t h e  steady-state l e v e l  ( t  -+a) of X- , i s  given by 

and K = a I + k. Fig. 7 i l l u s t r a t e s  t h e  behavior of X- a t  various 

l i g h t  i n t e n s i t i e s  f o r  x = 0 .  The decay i n  t h e  dark i s  given by 
0 

x- = ~ i e - ~ ~ .  The dashed l i n e s  of Figure 7 ind ica te  t he  behavior when t h e  

l i g h t  is  extinguished a f t e r  various l eve l s  of X- a r e  reached. There a r e  

several  points t o  note. The stea,dy-state l e v e l  a,symptotically reaches s Xr 
with increasing l i g h t  i n t ens i t y  ( a  >> k)  . Since i r i i t i a l l y  X- = 0, 

0 

t h e  dark decay f i s  i n i t i a l l y  zero. The i n i t i a i  r a t e  of f the re fore  i s  
out i n  

proportional  t o  l i g h t  i n t ens i t y .  The r i s e  and decay a r e  f i r s t  order.  One 

can demonstrate t h i s  f o r  t h e  r i s e  by p lo t t i ng  log(x;, - X-) vs. time. - 

This gives a s t r a i g h t  l i n e  with slope -K. Similarly t he  decay gives a 

s t r a igh t  l i n e  with slope -k when t h e  log X- i s  p lot ted a s  a funct ion of 

time. Also, since t he  dark decay does not depend on how X- i s  reached, t h e  

decays represented by the  two dashed curves i n  Fig. 7 should be superimposa,bl.e 

i f  one of t he  curves i s  sh i f t ed  i n  time. 



Let us now t u r n  t h e  problem around, and assume t h a t  we a r e  able  t o  

follow the  r i s e  and decay of X- and want t o  determine f and f 
i n  out ' 

To 

check whether these  functions s a t i s f y  t he  f i r s t  order behaviour described 

above, we can look at log  p lo t s  and we can check whether we f ind t h e  

appropriate i n t e n s i t y  dependence of t h e  steady-state l e v e l  and t h e  i n i t i a l  

r a t e  . 
A s  an  example of t h e  above considerations we w i l l  discuss some data  

on t h e  redox s t a t e  of plastoquinone i n  t h e  presence of a sys ten I acceptor 

and an uncoupler. Changes i n  op t i ca l  densi ty  at about 25h- nm have been 

a t t r i bu t ed  t o  changes i n  t h e  redox s t a t e  of glastoquinone.33 These changes 

34y 35 appear rap id ly  (< 50 psec )  and have k ine t i c s  which suggest t h a t  

pool A is  plastoquinone. Although the  da ta  and i n t e rp re t a t i on  may be obsolete 

i n  l i g h t  of never informat ion, 32 they a r e  presented because of pedagogical 

merits .  The model assumes t h a t  a t  s a tu r a t i zg  l i g h t  i n t e n s i t i e s  a l l  Q i s  

reduced and t h a t  t h e  time f o r  t he  ini t ial  reduction of Q can be neglected. 

The r a t e  between Q and A then i s  proportional  t o  A.  A, i n  turn ,  t r ans f e r s  

i t s  e lect rons  t o  B which, because of rapid  oxidation by t he  r e s t  of the  cha,in 

i n  t h e  presence of acceptor and uncoupl.er, i s  always i n  t he  oxidized s t a t e .  

We then  have 

k 
Q Q >  A k ~ >  B 

f a s t  
H2° 

> P. 

The r a t e  of reduction of A i s  given by: 

where kA = k a B and -\, and R a r e  t h e  t o t a l  z ~ o u n t s  of A and B i n  
A T "T 



a chain. With t h e  appropriate subs t i t u t i on  of symbols, t h i s  i s  t he  f i r s t  

order equation given previously i n  t he  sect ion.  The so lu t ion  t o  t h i s  
- - 

equation with A- = 0 a t  t = 0 i s  
0 

where A; 
= Lk$(kg + k A j  AT i s  t h e  steady-state l e v e l  of A-. I f  t h e  

l i g h t  i s  extinguished a f t e r  A- has reached a c e r t a i n  level ,  A- should go 

oxidized with a r a t e  d ~ - / d t  = - kAA-. The plastoquinone changes repor t -  

ed f o r  these  two s i t ua t i ons  follow t h i s  f i r s t  order behaviour, with 

(kQ + kA) = 46/sec i n  t h e  " l i gh t  on" experiment; and k = l l / s e c  i n  t h e  
A 

" l i gh t  off"  experiment. Therefore k = 35 see .  The maximuin amount of 
Q 

reduced A- i n  sa tu ra t ing  l i g h t  i s  then 
A; 

= ( 3 5 1 4 6 ) ~ ~  or  about 80%. A 

compar5.son of absorption changes of p l a s t  oquinone and P-(00 (making assumptions 

concerning ex t inc t ion  coef f ic ien t s )  s e t s  t h e  number of A molecules ( A  ) at 
T 

13 equivalents per R O O  molecule o r  chain. Therefore about 10 A equivalents 

per chain a r e  reduced i n  t h e  steady-state.  

The model suggests t h a t  a t  t h e  onset of i l luminat ion a l l  Q1s a r e  

reduced very rap id ly  (< - 50 $sees) and fu r the r  reduction of t he  system cannot 

t ake  place u n t i l  e lect rons  go t o  A. The time f o r  t r ans f e r  from Q t o  A >~ould 

+ 
be proportional  t o  the  amount of oxidized A, ( A  ).  I n  t h e  steady-state t he  

+ 
r a t e  i s  k A = (35/sec)(3) OJ 100/sec. Therefore t h e  time i s  about 10 msec, 

Q - 

again  reminiscent of t h e  time i n  t h e  Emerson-Arnold experiment and consis tent  

wi th  .the time f o r  reduction of P when l i g h t  i s  extinguished. Since i n  t he  

steady-state a l l  r a t e s  must be t h e  same, i n  pa r t i cu l a r  t h e  r a t e  of t r a n s f e r  
1 



from A ( k A ~ - )  must be PJ' - 100 / sec .  For A completely oxidized, the  t r a n s f e r  

r a t e  Q + A i s  (35/sec)(13) hi 500/sec corresponding t o  a time of M 2 msec. 
- - 

Since e -.69 = 0.5, t he  hal f  time f o r  t he  t o t a l  plastoquinone change 

i s  g i v e n b y  t = .69/(kA + k g )  15 msec. That i s  t h e  time f o r  5 of the  
112 

- 

A equivalents t o  be reduced 

So f a r  we have l imi ted our discussion t o  f i r s t  order react ions .  

Other types of reactions '  such a s  second order undoubtedly occur We r e f e r  

.the reader t o  textbooks on k ine t i c s  f o r  t h i s .  However, such disaussions a r e  

of l imi ted use f o r  t he  understanding of more complex, i n t e r r e l a t i n g  processes. 

It should be emphasized t h a t  precise  measurements over a large  range a r e  

required t o  decide between a sequence of f i r s t  order reactions and a second 

order or  more complicated process. 

For t he  case where t h e  decay i s  not so l e ly  a function of X-, other  

parameters must be varied i n  order t o  obtain t he  f u n c t i o ~ a l  dependences of 

f i n  and fout  
No longer can decays be superimposed. f i n  

can be determined 

a t  each point; i. e . ,  by adding f t o  -- 
d t  f i n  

a t  some point i s  t he  slope 
out 

of t h e  r i s e  curve at t h a t  point minus the  magnitude of t he  i n i t i a l  slope of 

t h e  decay curve when t h e  l i g h t  i s  extinguished a t  t h a t  point .  

It i s  not always necessary t o  d i r e c t l y  measure a component i n  order 

t o  determine i t s  k lne t i c  behavior The next sectiori gives an example of how 

t h e  k ine t i c  decay of an unident i f ied  component which l i m i t s  t he  formation of 

oxygen precursor i s  determined i nd i r ec t l y  from oxygen evolution.  

We have t a c i t l y  ignored di f ferences  between separate and in te rac t ing  

chains i n  t he  above k ine t i c  discussions.  This was possible because t h e  



behavior f o r  a simple, f i r s t  order reac t ion  i s  the  same f o r  both. This i s  

not t r u e  i n  general.  Some examples of separate chain behavior w i l l  be given 
-/ 

i n  t he  l a s t  section.  

0 Evolution. 
-2 

Intermediates of the  oxygen evolution process - precursors of 0 - 
2 

axPe unstable so t h a t  i n i t i a l l y  a f t e r  a dark period precursors r a the r  than  

oxygen a r e  made. 36 Accordingly, i f  a f t e r  a dark period a continuous l i g h t  i s  

given, the  O2 r a t e  i s  i n i t i a l l y  zero and then  r i s e s  t o  t h e  steady-state 

value. Such r i s e  curves of t h e  r a t e  follow the  I x t re la t ion ;  i . e . ,  the  

oxygen d e f i c i t  a t  t h e  onset of i l luminat ion r e f l e c t s  a f i n i t e  pool - a pool 

of 0 precursors which a r e  present during t he  steady-state but absent a f t e r  2 

a dark period. Most of t h i s  d e f i c i t  i s  removed by a s ingle  f l a sh .  I n  

other  words, t he  d e f i c i t  pool i s  of t he  order of one equivalent per trapping 

center .  

The simplest k ine t i c  i n t e r p r e t a t i ~ n ~ ~  of t he  0 evolution process 
2 

i s  a l i n e a r  accumulation of four  -t charges by a ca ta lys t  S, connected t o  each 

individual  trapping center, 

where t h e  subscript  of S designates t h e  amount of accumulated charge. The S 
3 

and S2 s t a t e s  a r e  unstable, being deactivated (reduced) t o  S1, a s tab le  

s t a t e :  S S --+ S1. Therefore a f t e r  a long dark period t h e  t r a p s  a re  
3 

e i t h e r  i n - t h e  SO o r  S1 s t a t e .  Each of a s e r i e s  of b r i e f  f l ashes  adds one 

oxidizing equivalent t o  each trapping center  and brings S i n  t he  next higher 

oxidation s t a t e .  After  deact ivat ion t he  f i r s t  two f lashes  y i e ld  no oxygen 



but b r ing  t he  So o r  S1 s t a t e s  i n t o  S o r  S s t a t e s .  The t h i r d  and four th  
2 3 

f l a shes  now produce oxygen. - - 
Photoact I1 cannot be repeated unless Q and Z a r e  regenerated. I f  

we assume a one t o  one correspondence between S, Q and Z, t h e  time between 

f l a s h  p a i r s  i s  a measure of t h e  slowest regeneration time i n  t h e  sequence 

s 3 A. For example (Fig. 8)) f l a s h  #C? l o s t  hal f  i t s  ef fect iveness  i f  

sp&ed c loser  than 200 Fsecs  t o  t h e  1st f l a sh .  The regeneration occurred 

i n  a second order mznner. The regeneration time necessary f o r  f l a s h  #3 t o  

be e f f ec t i ve  a f t e r  f l a s h  #2 i s  somewhat longer.. Thus with t h e  assumption of 

a one t o  one correspondence, t h e  recGvery of both donor and acceptor f o r  

system 11, (under ce r t a in  condit ions) takes  place i n  _< 200 /Usecs . Under 

o ther  conditions t h i s  recovery should be slower, r e f l e c t i ng  the  dependence 

of t h e  t r a n s f e r  time from Q t o  A upon t he  redox s t a t e  of A. 

We could expect t h a t  op t i ca l  density changes associated with e i t h e r  

a primczry donor or  ~icceptor  t o  system I1 would occur rap id ly  upon i l lumination.  

From t h e  paragraph d i r e c t l y  above, we would a l so  expect a rapid  decay of 

these  changes. Fast changes i n  op t i ca l  density associated v i t h  system I T  

which may be re la ted  t o  t he  primary acceptor or  donor have been observed at 

$"' and 325 m. 33 These changes were observed with  t h e  use of 682 nm 

r e p e t i t i v e  f l ashes  of about 10-20,i..isecs duration i n  t h e  presence of acceptor 

(benzyl viologen) and uncoupler (NH ~ 1 ) .  The negative absorption change a t  4 
682 appears t o  be t h a t  of a chlorophyll.  Because of i t s  rapid  r e tu rn  (N 200 

psec)  it can be separated k i n e t i c s l l y  from changes due t o  T O O ,  which r e s to r e  

much slower. We have observed (unpublished) a s imi la r  rapid r e tu rn  of t he  

fluorescence yield,  which w a s  r a i sed  by a b r i e f  f l a sh .  



S e ~ a r a t e  Chains and Eaui l ibr ia .  

+ 
A s  we mentiolied before, t he  small temperature e f f ec t  upon t he  C -+ P 

t r a n s f e r  shows t h a t  we a r e  not dealing wi th  conventional react ions  i n  

so lu t ion  where a l l  reac tan t s  can meet each other, but  t h a t  t h e  components a r e  

b u i l t  together i n  a r i g i d  matrix - so  t h a t  each P-(OO communicates with only 

one cytochrome donor molecule. It i s  believed t h a t  t h e  other components i n  

t h e  chain behave a t  l e a s t  pa r t l y  i n  t h i s  manner; i . e . ,  t o  a l a rge  degree 

each chain operates independently of t h e  others.  The behavior of such 

systems i s  d i f f e r en t  enough from t h a t  of molecules i n  solukion t h a t  a few 

comments a r e  i n  order. 

One fea ture  of independent chains i s  t h a t  t h e  various react ions  w i l l  

show f i r s t  order k ine t i c s  ra ther  than second o r  higher order behavior; i . e . ,  

i n  t h e  reac t ion  between W O O  and cytochrome the  r a t e  w i l l  not be proportional  

+ 4- 
t o  t he  product of t h e  two concentrattons ( P  SC). For each chain i n  t h e  P C 

-I- 
s t a t e  t h e  e lec t ron  tra.nsfer from C -+ P has a cha rac t e r i s t i c  proba'oility of 

- 1 
occurrence k(sec ), and viewing t he  overa l l  system t h e  r a t e  w i l l  be t h e  

4- 
product of k and t h e  nmn5er of P C s t a t e s  i n  t h e  sample. 

Another fea ture  of independent chains i s  t h a t  normal equilibrium 

considerations may not be applicable.  An example of t h i s  i s  obtained from 

t h e  comparlson of t h e  steady-state reduction l eve l s  of V O O  and cytochrome - f 

i n  weak l i g h t  of various wavelengths. I n  wea,k l i gh t ,  quanta a r r i ve  i n  t he  

t r a p s  so  dnfrequently t h a t  t he  dark react ions  have ample time t o  proceed and 

equilibrium conditions a re  expected: 



One now observes f o r  example40, t h a t  a t  a wavelength where cytochrome 

f i s  AI 50% reduced R O O  i s  r~ 80% reduced and computes a value - 

I n  darkness, however, with t h e  same chloroplasts ,  one meets th5  s i t u a t i o n  

t h a t  v i r t u a l l y  a l l  TO0 i s  reduced and a l l  cytochrome - f i s  oxidized, which 

suggests a very much higher equilibrium constant. 

There a r e  th ree  possible explanations f o r  t h i s  apparent change of K. 

The f i r s t  i s  t h a t  t h e  same e n t i t i e s  a r e  not measured i n  t he  two experiments. 

Spectra l  measurements indicate  t h a t  they  a r e .  The second i s  t h a t  t he  equi- 

l ibr ium constant changes, perhaps due t o  some change i n  membrane s t ruc ture .  

Attempts t o  see changes caused by t h e  additi.ons of uncotrplers have fa i l ed ,  

ind ica t ing  t h a t  t h e  high energy intermediate associated with ATP formation 

and associated phenomena a re  probably not involved. The t h i rd  i s  t h a t  i n  a t  

l e a s t  one of t h e  experiments eq~l i l ib r ium i s  not obtained. The r a p i d i t y  of 

t he  reac t ion  between C and P i s  such t h a t  equilibrium should have been ob- 

ta ined.  I n  add i t ion  t he  r e s u l t s  were independent of l i g h t  i n t ens i t y  over a 

wide range. 

The concept of "independent chains" not i n  equilibrium with  one an- 

other  can account f o r  such an apparent change of K: A t  any moment t h e  

+ +  + 
individual  'chains i n  t h e  sample can have four possible s t a t e s  P C , P C, 

+ + 
PC , PC. If we assume a high inherent  K value, s t a t e  P C with a l i f e  time 

of 1 msec does not accumulate, so  t h a t  we have a d i s t r i bu t i on  between only 

+ +  3. 
t h e e  s t a t e s  with e i t h e r  0, 1 or  2 e lect rons  i n  the  complex ( P  C , PC , PC). 

Fjhile t h e  high inherent  K; observed i n  darkness, does not allow the  occurrence 

+ 
of P C chains, t h e  lack of e lec t ron  t r a n s f e r  between chains allows a 



+ + I I 

simultaneous accumulation of s t a t e s  P C and PC. Since the  e n t i r e  system and 

+ 
not individual  chains a re  vie%~ed, the  presence of both P and C a t  t he  same 

41 time gives t he  appearance of a low K. Malkin, who t r ea t ed  t h i s  matter  i n  

d e t a i l ,  computes that f o r  a 2 component system,. l i k e  t h e  one discussed, an 

i r r eve r s ib l e  s t ep  (K =w) would appear t o  have a varying K which, i n  t h e  

range of easy measurement, would appear t o  be a s  low a s  4. He fu r the r  

calculated t h a t  t h i s  d i s t o r t i on  rap id ly  decreases with an increase of t h e  

number of s teps  and intermediates i n  t h e  chain. 

A s imi la r  low apparent equil ibrium constant i n  t he  l i g h t  has been 

observed between Q and P. I n  t h e  steady s t a t e ,  t he  r a t e  of input t o  systen: 

I1 must equal t h e  output of system I and R2 = R = a fi 1Q = a fi IP i n  which 
1 2 2  11  

R and R a r e  t he  r a t e s  of the  two systems. Thus, considering t h e  ove ra l l  
1 2 

s,ystem ( the  t o t a l  of a l l  r eac t ion  chains) we w i l l  f i nd  a wavelength dependent 

r a t i o  of open t r aps  i n  t h e  two systems; Q/P = %fi1/~f i2 .  I f ,  i.n addit ion,  

we assume e q u i l i b r i ~ ~ ~ ,  t he  added constant f i x e s  t h e  l eve l s  of P and Q; i . e . ,  

both P and Q a r e  independent of l i g h t  i n t ens i t y .  These re la t ionsh ips  a r e  

observed experimentally f o r  l i g h t  i n t e n s i t i e s  weak enough so t h a t  ne i ther  the  

r a t e  of t r ans f e r  betr-reen Q and P nor t he  r a t e  of t r a n s f e r  a t  t he  ends of t he  

chain i s  l imi t ing .  Therefore t he  redox s t a t e  of t he  two t r aps  i n  continuous 

l i g h t  of various wavelengths should revea l  the  value of K w ' One can use 

. one of t h e  several  procedures discussed abo~re t o  determine t h e  s t a t e s  P and 

42 
Q. The r e s u l t s  of such measurements suggested an unexpectedly low value 

f o r  K (< 10) .  These low computed K values a r e  c l e a r l y  i n  conf l i c t  wi th  
QP - 

estimates of K i n  darkness and t he  respect ive  midpoint po ten t ia l s  ( t h e  
QP 1 

difference i n  midpoint po ten t ia l s  QE at room temperature i s  given by m 



RT log K w 60 log  K 
QP 

where t h e  po t en t i a l  i s  expressed i n  mi i l ivo l t s .  I n  t h i s  instance, due t o  

t h e  l a rge  number of components between Q and P, t he  discrepancy does not 

appear due t o  non-equilibrium between chains. 
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Fig. 1 - Schematic f o r  t he  non-cyclic e lec t ron  flow from water t o  C02. 

Dashed l i n e s  ind ica te  components omitted from the  scheme. 

Fig. 2 - Fluorescence y ie ld  ( a r b i t r a r y  un i t s )  f o r  i so la ted  dark-adapted 

chloroplas ts  a s  a function of time a.) i n  t he  absence of 

DCMU, and b . )  i n  t h e  presence of DCMU. 

Fig. 3 - Model f o r  pool s i z e  measurements. 

Fig. 4 - Rate of viologen reduction a s  a function of time f o r  three  

d i f f e r en t  i n t e n s i t i e s  of far- red l i g h t  f o r  emptying the  pool. 

Fig. 5 - Time course f o r  absorption of flOO i n  t h e  presence of far- red 

l i g h t  a f t e r  t he  pool was f i l l e d  with a long f l a s h  ( top)  o r  

p a r t l y  f i l l e d  by a b r i e f  f l a s h  (bottom). 

Fig. 6 - Flv.orescence yie ld  ( a r b i t r a r y  un i t s ) ,  f o r  i so l a t ed  chlol-oplasts 

as a funct ion of time. The shaded a rea  A i s  obtained i n  t h e  

absence of an acceptor. An add i t iona l  a rea  B was obtained 

when t h e  acceptor ferr icyanide was added at  time designated 

by arrow. 

Fig. 7 - X- as a funct ion of t f o r  simple f i r s t  order behavior. Solid 

l i ne s ,  l i g h t  of given i n t e n s i t i e s  turned on a t  t = 0. with 

X- = 0 .  . Dashed l ines ,  l i g h t  turned off  at arrow. 
0 

Fig. 8 - Oxygen y ie ld  from t h e  t h i r d  of a sequence of three  f lashes  a s  a 

funct ion of time between t h e  1 s t  two f l a shes  
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